On classifying finite edge colored graphs with two transitive automorphism groups
نویسنده
چکیده
This paper classifies all finite edge colored graphs with doubly transitive automorphism groups. This result generalizes the classification of doubly transitive balanced incomplete block designs with 1 and doubly transitive one-factorizations of complete graphs. It also provides a classification of all doubly transitive symmetric association schemes. The classification of finite simple groups in the 1980s has led to classification theorems concerning a variety of designs and geometric structures. Edge colored graphs generalize balanced incomplete block designs with 1 and one-factorizations of complete graphs and provide a reinterpretation of metric spaces. This paper classifies the doubly transitive edge colored graphs (abbreviated 2-t ec-graphs), extending results of Kantor [14] and Cameron and Korchmaros [8]. The doubly transitive symmetric graph designs of Cameron [7] when 1 match the 2-t ec-graphs for which the number of colors equals the number of vertices. Edge colored graphs, which in this article are always colorings of complete graphs, are closely related to the rainbows Aschbacher defined in
منابع مشابه
On the eigenvalues of normal edge-transitive Cayley graphs
A graph $Gamma$ is said to be vertex-transitive or edge- transitive if the automorphism group of $Gamma$ acts transitively on $V(Gamma)$ or $E(Gamma)$, respectively. Let $Gamma=Cay(G,S)$ be a Cayley graph on $G$ relative to $S$. Then, $Gamma$ is said to be normal edge-transitive, if $N_{Aut(Gamma)}(G)$ acts transitively on edges. In this paper, the eigenvalues of normal edge-tra...
متن کاملClassifying pentavalnet symmetric graphs of order $24p$
A graph is said to be symmetric if its automorphism group is transitive on its arcs. A complete classification is given of pentavalent symmetric graphs of order 24p for each prime p. It is shown that a connected pentavalent symmetric graph of order 24p exists if and only if p=2, 3, 5, 11 or 17, and up to isomorphism, there are only eleven such graphs.
متن کاملProduct of normal edge-transitive Cayley graphs
For two normal edge-transitive Cayley graphs on groups H and K which have no common direct factor and $gcd(|H/H^prime|,|Z(K)|)=1=gcd(|K/K^prime|,|Z(H)|)$, we consider four standard products of them and it is proved that only tensor product of factors can be normal edge-transitive.
متن کاملThe automorphism groups of non-edge-transitive rose window graphs
In this paper, we will determine the full automorphism groups of rose window graphs that are not edge-transitive. As the full automorphism groups of edge-transitive rose window graphs have been determined, this will complete the problem of calculating the full automorphism group of rose window graphs. As a corollary, we determine which rose window graphs are vertex-transitive. Finally, we deter...
متن کاملTwo-geodesic transitive graphs of prime power order
In a non-complete graph $Gamma$, a vertex triple $(u,v,w)$ with $v$ adjacent to both $u$ and $w$ is called a $2$-geodesic if $uneq w$ and $u,w$ are not adjacent. The graph $Gamma$ is said to be $2$-geodesic transitive if its automorphism group is transitive on arcs, and also on 2-geodesics. We first produce a reduction theorem for the family of $2$-geodesic transitive graphs of prime power or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. B
دوره 90 شماره
صفحات -
تاریخ انتشار 2004